Spectrum

Optical constants of a Ca-Mg-Fe-silicate glass with pyroxene stoichiometry, cosmic composition, from UV to FIR

Title
Optical constants of a Ca-Mg-Fe-silicate glass with pyroxene stoichiometry, cosmic composition, from UV to FIR
DOI
10.26302/SSHADE/EXPERIMENT_HM_20171017_001
Data reference
Jäger, Cornelia; Mutschke, Harald; Begemann, Birgit; Dorschner, Johann; Henning, Thomas (1993): Optical constants from UV to FIR for a silicate glass of cosmic composition. SSHADE/DOCCD (OSUG Data Center). Dataset/Spectral Data. https://doi.org/10.26302/SSHADE/EXPERIMENT_HM_20171017_001
Publications
Experiment type
laboratory measurement
Type
optical constants
Comments
The spectrum was resampled between 0.25 and 500 µm with varying sampling steps depending on the wavelength range
Instrument
Lambda 19 – transmission vis
Standard medium
vacuum
Observation mode
spectrum
Spectral range type(s)
Vis
Valid spectral range(s)
Min - Max (${\mu}m$) Sampling (${\mu}m$) Resolution (${\mu}m$) Position accuracy (${\mu}m$) Absorption edge
#1 0.319 - 0.86 1.0
Scan number
1
Resolution illumination
6.0°
Resolution observation
6.0°
Illumination
Type of polarization
no
Observation
Type of polarization
no
Observation mode
single spot
Resolutions
5.0 $mm$
Instrument
Lambda 19 – transmission NIR
Standard medium
vacuum
Observation mode
spectrum
Spectral range type(s)
NIR
Valid spectral range(s)
Min - Max (${\mu}m$) Sampling (${\mu}m$) Resolution (${\mu}m$) Position accuracy (${\mu}m$) Absorption edge
#1 0.86 - 3.2
Scan number
1
Resolution illumination
6.0°
Resolution observation
6.0°
Illumination
Type of polarization
no
Observation
Type of polarization
no
Observation mode
single spot
Resolutions
5.0 $mm$
Instrument
BRUKER 113v – reflection Near-IR
Standard medium
vacuum
Observation mode
spectrum
Spectral range type(s)
NIR
Valid spectral range(s)
Min - Max (${\mu}m$) Sampling (${\mu}m$) Resolution (${\mu}m$) Position accuracy (${\mu}m$) Absorption edge
#1 1.0 - 2.0
Scan number
64
Observation geometry
specular
Observation mode
fixed angles
Incidence angle
12.0°
Emergence angle
12.0°
Phase angle
0.0°
Resolution illumination
6.0°
Resolution observation
6.0°
Illumination
Type of polarization
no
Observation
Type of polarization
no
Observation mode
single spot
Resolutions
5.0 $mm$
Instrument
BRUKER 113v – transmission Mid-IR
Standard medium
vacuum
Observation mode
spectrum
Spectral range type(s)
MIR
Valid spectral range(s)
Min - Max (${\mu}m$) Sampling (${\mu}m$) Resolution (${\mu}m$) Position accuracy (${\mu}m$) Absorption edge
#1 2.0 - 25.0
Scan number
32
Resolution illumination
6.0°
Resolution observation
6.0°
Illumination
Type of polarization
no
Observation
Type of polarization
no
Observation mode
single spot
Resolutions
5.0 $mm$
Instrument
BRUKER 113v – reflection Mid-IR
Standard medium
vacuum
Observation mode
spectrum
Spectral range type(s)
MIR
Valid spectral range(s)
Min - Max (${\mu}m$) Sampling (${\mu}m$) Resolution (${\mu}m$) Position accuracy (${\mu}m$) Absorption edge
#1 2.0 - 25.0
Scan number
64
Observation geometry
specular
Observation mode
fixed angles
Incidence angle
12.0°
Emergence angle
12.0°
Phase angle
0.0°
Resolution illumination
6.0°
Resolution observation
6.0°
Illumination
Type of polarization
no
Observation
Type of polarization
no
Observation mode
single spot
Resolutions
5.0 $mm$
Instrument
BRUKER 113v – reflection Far-IR
Standard medium
vacuum
Observation mode
spectrum
Spectral range type(s)
FIR
Valid spectral range(s)
Min - Max (${\mu}m$) Sampling (${\mu}m$) Resolution (${\mu}m$) Position accuracy (${\mu}m$) Absorption edge
#1 15.0 - 80.0
Scan number
64
Observation geometry
specular
Observation mode
fixed angles
Incidence angle
12.0°
Emergence angle
12.0°
Phase angle
0.0°
Resolution illumination
6.0°
Resolution observation
6.0°
Illumination
Type of polarization
no
Observation
Type of polarization
no
Observation mode
single spot
Resolutions
5.0 $mm$
Experiment
Optical constants from UV to FIR for a silicate glass of cosmic composition
Date begin
1993-01-01
Release date
2018-01-31 23:51:01 UTC+0000
Version (Date)
#1 (2017-10-25 13:29:31 UTC+0000, Updated: 2019-07-08 09:09:28 UTC+0000)
History
Date Mode Version Status Comments
2017-10-25 13:29:31 UTC+0000 first import #1 valid version first version
Analysis
In the vis and infrared up to 8 micron, the imaginary part was derived from the transmittance of a 0.047 mm thick slab while the real part from 1 to 8 micron was determined from reflectance (spectra measured with Lambda 19 and Bruker 113v were merged). In the MIR/FIR, the optical constants were determined by Kramers-Kronig analysis of the reflectance spectrum. The real part was extended to the UV/vis (0.25 - 0.9 micron) by merging with data measured by spectroscopic ellipsometry (SOPRA ES4G, by A. Zuber, Fraunhofer IOF Jena).
Quality flag
4